Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways.

نویسندگان

  • Minjae Kim
  • Mihwa Kim
  • Nala Kim
  • Vivette D D'Agati
  • Charles W Emala
  • H Thomas Lee
چکیده

The inhalational anesthetic isoflurane has been shown to protect against renal ischemia-reperfusion (IR) injury. Previous studies demonstrated that isoflurane modulates sphingolipid metabolism in renal proximal tubule cells. We sought to determine whether isoflurane stimulates sphingosine kinase (SK) activity and synthesis of sphingosine-1-phosphate (S1P) in renal proximal tubule cells to mediate renal protection via the S1P signaling pathway. Isoflurane anesthesia reduced the degree of renal failure and necrosis in a murine model of renal IR injury. This protection with isoflurane was reversed by SK inhibitors (DMS and SKI-II) as well as an S1P(1) receptor antagonist (VPC23019). In addition, mice deficient in SK1 enzyme were not protected from IR injury with isoflurane. SK activity as well as SK1 mRNA expression increased in both cultured human proximal tubule cells (HK-2) and mouse kidneys after exposure to isoflurane. Finally, isoflurane increased the generation of S1P in HK-2 cells. Taken together, our findings indicate that isoflurane activates SK in renal tubule cells and initiates S1P-->S1P(1) receptor signaling to mediate the renal protective effects. Our findings may help to unravel the cellular signaling pathways of volatile anesthetic-mediated renal protection and lead to new therapeutic applications of inhalational anesthetics during the perioperative period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoflurane activates intestinal sphingosine kinase to protect against renal ischemia-reperfusion-induced liver and intestine injury.

BACKGROUND Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury and often leads to multiorgan dysfunction and systemic inflammation. Volatile anesthetics have potent antiinflammatory effects. We aimed to determine whether the representative volatile anesthetic isoflurane protects against acute kidney injury-induced liver and intestinal injury and to determine the mech...

متن کامل

Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia

Renal ischemia-reperfusion injury is a major cause of acute kidney injury. We previously found that renal A(1) adenosine receptor (A(1)AR) activation attenuated multiple cell death pathways including necrosis, apoptosis, and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1-phosphate (S1P) synthesis might be the mechanism of protection...

متن کامل

Isoflurane activates intestinal sphingosine kinase to protect against bilateral nephrectomy-induced liver and intestine dysfunction.

Acute kidney injury (AKI) frequently leads to systemic inflammation and extrarenal organ dysfunction. Volatile anesthetics are potent anti-inflammatory agents and protect against renal ischemia-reperfusion injury. Here, we sought to determine whether isoflurane, a commonly used volatile anesthetic, protects against AKI-induced liver and intestinal injury, the mechanisms involved in this protect...

متن کامل

Activation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury.

Agonists of the sphingosine-1-phosphate receptor (S1PR) attenuate kidney ischemia-reperfusion injury (IRI). Previous studies suggested that S1P1R-induced lymphopenia mediates this protective effect, but lymphocyte-independent mechanisms could also contribute. Here, we investigated the effects of S1PR agonists on kidney IRI in mice that lack T and B lymphocytes (Rag-1 knockout mice). Administrat...

متن کامل

A1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia-reperfusion injury.

Activation of A(1) adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A(1)AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A(1)AR (PD-81723) protects against renal I/R inju...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 293 6  شماره 

صفحات  -

تاریخ انتشار 2007